Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1
نویسندگان
چکیده
منابع مشابه
Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1
Reversible, covalent modification with small ubiquitin-related modifier proteins (SUMOs) is known to mediate nuclear import/export and activity of transcription factors. Here, the SUMO pathway is shown to operate at the plasma membrane to control ion channel function. SUMO-conjugating enzyme is seen to be resident in plasma membrane, to assemble with K2P1, and to modify K2P1 lysine 274. K2P1 ha...
متن کاملDoes Sumoylation Control K2P1/TWIK1 Background K+ Channels?
A novel model for the regulation of cell excitability has recently been proposed. It originates from the observation that the background K(+) channel K2P1 (TWIK1) may be silenced by sumoylation in Xenopus oocytes and that inactivation of the putative sumoylation site (mutation K274E) gives rise to robust current expression in transfected COS-7 cells. Here, we show that only the mutation K274E, ...
متن کاملDiacidic motif is required for efficient transport of the K+ channel KAT1 to the plasma membrane.
For a number of mammalian ion channels, trafficking to the plasma membrane was found to be controlled by intrinsic sequence motifs. Among these sequences are diacidic motifs that function as endoplasmic reticulum (ER) export signals. So far it is unclear if similar motifs also exist in plant ion channels. In this study we analyzed the function of four diacidic DXE/DXD motifs of the plant K(+) c...
متن کاملYKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast.
Our previous patch-clamp studies showed that depolarization activates a K(+)-specific current in the plasma membrane of the budding yeast, Saccharomyces cerevisiae [Gustin et al. (1986) Science 233, 1195-1197]. The Yeast Genome Sequencing Project has now uncovered on the left arm of chromosome X an open reading frame (ORF) that predicts a 77-kDa protein reminiscent of a shaker-like alpha subuni...
متن کاملCirculation of potassium across the plasma membrane of Blastocladiella emersonii: K+ channel.
A previous paper reported that the water mold Blastocladiella emersonii generates a transcellular electrical current, such that positive charges enter the rhizoid and leave from the thallus (Stump et al., Proc. Natl. Acad. Sci. U.S.A. 77: 6673-6677, 1980). To begin to understand the genesis of this current we investigated ionic relationships in this organism by use of intracellular microelectro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2005
ISSN: 0092-8674
DOI: 10.1016/j.cell.2005.01.019